Wildlife Telemetry Drone Project

Undergraduate Symposium Presentation 29 April 2016

Presented by: Lauren Adoram-Kershner, Lance Eberle, Kellan Rothfus, Jason Vizcaino

Overview

- 1. Project Description
- 2. Benchmarking
- 3. Customer Requirements
- 4. Design Process
- 5. Testing
- 6. Testing Results
- 7. Final Design

Project Description

Assist migratory studies of bats in remote Northern Arizona terrain.

• Project objective- redesign Iteration 3 to produce a lightweight, collapsible, and strong drone frame that is easy to assembly.

Sponsor/Client Interest: Dr. Michael Shafer has been conducting research in radio tracking systems.

Figure 1: General Drone Operational Concept.

Figure 2: SolidWorks Assembly of Iteration 3.

Project Description

Additional requirement of enclosing all electronics (except ESCs) was added after the initial project description.

• Electronics must be able to connect to their corresponding components.

Figure 3: General Layout of Quadcopter Electronics.

Figure 4: SolidWorks Assembly of Iteration 1.

Iteration 1:

- Electronics and propellers were not compatible.
- Extensive use of aluminum made frame too heavy.

Figure 5: SolidWorks Assembly of Iteration 2.

Iteration 2:

- Redesigned frame; 3D printed components, lightweight base material, and carbon fiber arrow arms.
- Properly sized propellers.
- Truss arm design maximized strength but had low torsional rigidity.

Iteration 3:

- 3D printed motor mounts and brackets.
- Cross members between motor mounts provide torsional rigidity.
- Refined landing gear using truss system.
- Power system provides ~4 kg of thrust.
- Too large and difficult to transport, over engineered.

Benchmarking

Research was conducted on existing frame components to aid in the design of Iteration 4.

- Arms must be able to resist torsion from motors.
 - Double boom
 - Square wooden arm
 - Truss design
- Motor mount designs were to be 3D printed.
 - Truss arm design
 - Double boom arm design

Figure 7: Jimustanguitar Motor Mount.

- Central hub must minimize volume for ease of transportation.
 - Stackable hub
 - Long central hub

Customer Requirements

From the project description and benchmarking data, the following customer requirements were developed:

- Lightweight (80)
- Strong/Rigid (80)
- Collapsible (50)
- Low Center of Gravity (30)
- Aesthetics (10)

The importance of each requirement is indicated by their associated weightings, which are out of 250 total points.

Design Process

Design A features stackable central hub and double boom arm design. It was completed before the enclosed electronics requirement was enacted.

Figure 8: SolidWorks Model of Design A.

Design Process

Design B features stackable hub and truss arm design to increase rigidity. It was completed after enclosed electronics requirement was enacted.

Figure 9: SolidWorks Model of Design B.

Testing

Physical Parameter	Testing Procedure	
Weight	Measure weight of frame and ensure it is under 0.45 kg	
Power to Weight Ratio	Measure net motor thrust and ensure it is twice the weight of the frame with electronics	
Durability	Vertically drop drone from 0.5 m and check for damage	
Rigidity	Conduct flight tests and ensure arms can handle torque of motors	
Storage Volume	Collapse drone and place into 30 L backpack	
Construction	Construct drone without use of diverse tool set	
Cost	Calculate cost of used materials, must total under \$250	

Testing Results

Physical Parameter	Testing Result	
Weight	Drone frame weighs 0.592 kg	
Power to Weight Ratio	Net thrust of motors is 4 kg and with electronics drone weighs 1.45 kg resulting in a Power to Weight ratio of 2.76	
Durability	No damage sustained from a 0.5 m drop	
Rigidity	Arms are sufficiently rigid during flight	
Storage Volume	Drone fits into 30 L backpack	
Construction	Drone only requires one hex key to construct	
Cost	Drone cost \$93.86 to construct (not including 3D printing, or electrical component costs)	

Final Design

Prototyping of Design B showed areas for tolerance and design intelligence improvements:

- External port/mount for flight controller power button
- Internal ports to allow battery harness to connect to ESCs

Figure 10: SolidWorks Assembly of Final Design.

Final Design

Iteration 3	Final Design (Iteration 4)
Six different lengths of carbon fiber arrow sections	One length of carbon fiber arrow section
17 separate 3D printed parts	Five 3D printed parts; including central hub
All carbon fiber arrows are epoxied into 3D printed junctions; completely rigid	Only permanent connections are arrow inserts; collapsible
Large propeller clearance	Propellers closer to frame; more maneuverable

Figure 11: SolidWorks Arm Assembly of Final Design; Exploded View.

Lance Eberle

Questions?

Figure 12: SolidWorks Assembly of Final Design; Exploded View.

References

[1] M. W. Shafer, "An Unmanned Aerial Radio Tracking System for Monitoring Small Wildlife Species," unpublished.[2] W. Arjana, et al, "Wildlife Telemetry Drone," unpublished.

[3] Jimustanguitar. (2015, May 1). *3D Printed & Carbon Fiber QuadCopter - My Own Design!* [Online]. Available: <u>http://forum.flux3dp.com/t/3d-printed-carbon-fiber-quadcopter-my-own-design/430</u>. Accessed: 7 Oct. 2015.

[4] D. Windestål. (2012 July 19). *The Tricopter V2.6HV*. [Online]. Available: <u>http://rcexplorer.se/projects/2012/07/the-tricopter-v2-6hv/</u>. Accessed: 7 Oct. 2015.

[5] Jimustanguitar. (2015, June 6). *3D Printed & Carbon Fiber QuadCopter* [Online]. Available: <u>http://www.instructables.com/id/3D-Printed-Carbon-Fiber-QuadCopter/</u>. Accessed: 7 Oct. 2015.

[6] HiModel. (2014, April 24). *12mm Plastic Motor Mount for Multi-rotor Aircraft Type B 123-004*. [Online]. Available: <u>http://www.himodel.com/m/electric/12mm_Plastic_Motor_Mount_for_Multi-rotor_Aircraft_Type_B_123-004.html</u>. Accessed: 7 Oct. 2015.

[7] Octovir. (2011, August 14). *Carbon Fiber Arducopter/Quadcopter Frame by Octovir*. [Online]. Available: <u>http://www.thingiverse.com/thing:10731</u>. Accessed: 7 Oct. 2015.

[8] Flite Test Store. (2014, July 14). *ElectroHub*. [Online]. Available: <u>http://store.flitetest.com/electrohub-quadcopter-kit/</u>. Accessed: 6 Oct. 2015.